Supplementary material concerning the paper

Supervisory Control of Petri Nets in the Presence of Replacement Attacks

Dan You, ShouGuang Wang, MengChu Zhou, Fellow, IEEE, and Carla Seatzu

\mathbb{N}^{+}	$\{0,1,2, \ldots\}$	\mathcal{A}
\mathbb{N}^{+}	$\{1,2, \ldots\}$	$\left(t, t^{\prime}\right)$
\mathbb{Z}	set of integers	$A(t)$
N	(P, T, F, W), a PN	
$[N]$	incidence matrix of N	
$\bullet x$	$\{y \in P \cup T \mid(y, x) \in F\}$, the set of inputs of $x \in P \cup T$	$A^{-1}(t)$
x^{\bullet}	$\{y \in P \cup T \mid(x, y) \in F\}$, the set of outputs of $x \in P \cup T$	
$\bullet X$	$\bigcup_{x \in X} \cdot x$, the set of inputs of $X \subseteq P \cup T$	$\Gamma_{(\omega, k)}(\mathcal{M})$
X^{\bullet}	$\bigcup_{x \in X} x^{\bullet}$, the set of outputs of $X \subseteq P \cup T$	
m	$P \rightarrow \mathbb{N}$, a marking or state	
$m(p)$	the number of tokens in place p at marking m	$\left(N^{c}, m_{0}{ }^{c}\right)$
$m[t\rangle$	transition $t \in T$ is enabled at a marking m	$\left[N^{c}\right]$
$E n(m)$	set of transitions enabled at m	p_{c}
\mathcal{M}	set of markings	m^{c}
$E n(\mathcal{M})$	$\bigcup_{m \in \mathcal{M}}$ En (m)	$m_{p c}$
$m[t\rangle m^{\prime}$	marking m^{\prime} is reached from m by firing t	$D i s\left(m_{p c}\right)$
m_{t}	marking reached by firing t at m	
m_{α}	marking reached by firing a transition sequence	$\Psi\left(m^{c}\right)$
	$\alpha \in T^{*}$ at m	\mathcal{M}^{c}
m_{0}	initial marking of a PN	$\Psi\left(\mathcal{M}^{c}\right)$
$\left(N, m_{0}\right)$	net system with initial marking m_{0}	

Ω
$\left\{\left(\omega_{1}, k_{1}\right),\left(\omega_{2}, k_{2}\right), \ldots,\left(\omega_{n}, k_{n}\right)\right\}$, a set of GMECs the conjunction of GMECs in Ω
$\bigcap_{(\omega, k) \in \Omega} \mathcal{L}_{(\omega, k)}$, the legal marking set of $\wedge \Omega$
$\mathcal{A} \in 2^{T \times T}$, a replacement attack action disguising the firing of transition t as the firing of transition t^{\prime}
set of all possible observed transitions when transition t really fired
set of all possible really fired transitions producing the observation t
$\left\{t \in \operatorname{En}(\mathcal{M}) \mid \exists m \in \mathcal{M}\right.$, s.t. $\left.\omega m_{t}>k\right\}$, the set of violating transitions at \mathcal{M} related to $\operatorname{GMEC}(\omega$, k)
monitor-controlled PN system
incidence matrix of N^{c}
monitor
marking of the monitor-controlled PN N^{c}
marking of the monitor place p_{c}
$\left\{t \in p_{c}{ }^{\bullet} \mid m_{p c}<W^{c}\left(p_{c}, t\right)\right\}$, the set of monitor-disabled transitions related a marking $m_{p c}$
$\operatorname{Dis}\left(m_{p c}\right) \cap E n(m)$, where $\left.\left[m^{T} m_{p c}\right]^{T}\right]^{T}=m^{c}$ set of markings of N^{c}
$\bigcup_{m^{c} \in \mathcal{M}^{c}} \Psi\left(m^{c}\right)$

II. Proof of Theorem 3

Let ($N^{c}, m_{0}{ }^{c}$) be the monitor-controlled PN system w.r.t. (N, m_{0}) and (ω, k). By Property $1, \forall m^{c} \in R\left(N^{c}, m_{0}^{c}\right), \omega m+m_{p c}=k$ and $\operatorname{Dis}\left(m_{p c}\right)=\{t \in T \mid \omega m+\bar{\omega}(t)>k\}$.

Let ρ be the policy computed by Method 3. By assumption, m_{0} is legal. Let $m_{p c 0}$ be the marking of monitor p_{c} such that $m_{0}{ }^{c}=\left[m_{0}, m_{p c 0}\right]$. Since $\rho(\varepsilon)=\operatorname{Dis}\left(m_{p c c}\right)$, any firable transition t at m_{0} satisfies the inequality: $\omega m_{0}+\varpi(t) \leq k$, i.e., any marking reachable from m_{0} by firing a transition is legal.

Let t_{1} be the first observed transition. Suppose that $t_{1}{ }^{\prime}$ is the really fired transition producing observation t_{1}. Let m_{1} and $m_{1}{ }^{c}$ be the markings reached by N and N^{c} after firing $t_{1}{ }^{\prime}$ from m_{0} and $m_{0}{ }^{c}$, respectively. It is $m_{1}^{c}=\left[m_{1}, m_{p c 1}\right]$, where $m_{p c 1}=k-\omega m_{1}$ and $m_{p c 1}=m_{p c 0}+\left[N^{c}\right]\left(p_{c}, t_{1}^{\prime}\right)$. Let $m_{p c 1}{ }^{*}=m_{p c 0^{+}}+\min _{t^{\prime} \in T_{\text {real }}}\left[N^{c}\right]\left(p_{c}, t^{\prime}\right)$, where $T_{\text {real }}=A^{-1}\left(t_{1}\right) \cap E n\left(m_{0}{ }^{c}\right)$ since Flag=True. We can see that $m_{p c 1} * \leq m_{p c 1}$ since $t_{1}{ }^{\prime} \in T_{\text {real }}$. Hence, $\operatorname{Dis}\left(m_{p c 1}{ }^{*}\right) \supseteq \operatorname{Dis}\left(m_{p c 1}\right)$. We
observe that $\omega m_{1} \leq k$ and $\operatorname{Dis}\left(m_{p c 1}\right)=\left\{t \in T \mid \omega m_{1}+\varpi(t)>k\right\}$. Since $\rho\left(t_{1}\right)=\operatorname{Dis}\left(m_{p c 1}{ }^{*}\right)$, any firable transition t at m_{1} satisfies the condition: $\omega m_{1}+\bar{\omega}(t) \leq k$, i.e., any marking reachable from m_{1} by firing a transition is legal.
If Flag is still "True", when the next transition is observed, by repeating the above reasoning, the reachable markings in the next step are all legal. Let us consider now the case that Flag is changed to "False". Let t_{2} be the next observed transition. Suppose that t_{2}^{\prime} is the really fired transition producing observation t_{2}. Let m_{2} and $m_{2}{ }^{c}$ be the markings reached by N and N^{c} after firing t_{2}^{\prime} from m_{1} and $m_{1}{ }^{c}$, respectively. Clearly, $m_{2}{ }^{c}=\left[m_{2}, m_{p c 2}\right]$, where $m_{p c 2}=k-\omega m_{2}$ and $m_{p c 2}=m_{p c 1}+\left[N^{c}\right]\left(p_{c}, t_{2}{ }^{\prime}\right)$. Let $m_{p c 2}{ }^{*}=m_{p c 1}{ }^{*}+\min _{t^{\prime} \in T_{\text {real }}}\left[N^{c}\right]\left(p_{c}, t^{\prime}\right)$, where $T_{\text {real }}=A^{-1}\left(t_{2}\right) \backslash \rho\left(t_{1}\right)$ since Flag=False. Since $m_{p c 1}{ }^{*} \leq m_{p c 1}$ and $t_{2}{ }^{\prime} \in T_{\text {real }}$, it holds that $m_{p c 2}{ }^{*} \leq m_{p c 2}$. Hence, $\operatorname{Dis}\left(m_{p c 2}{ }^{*}\right) \supseteq \operatorname{Dis}\left(m_{p c 2}\right)$. We observe that $\omega m_{2} \leq k \quad$ and $\operatorname{Dis}\left(m_{p c 2}\right)=\left\{t \in T \mid \omega m_{2}+\widetilde{\omega}(t)>k\right\}$. Since $\rho\left(t_{1} t_{2}\right)=\operatorname{Dis}\left(m_{p c 2}{ }^{*}\right)$, any firable transition t at m_{2} satisfies the condition: $\omega m_{2}+\widetilde{\omega}(t) \leq k$, i.e., any marking reachable from m_{1} by firing a transition is legal.
By repeating the above reasoning, every time we observe a transition, the computed disabled set guarantees that the reachable markings in the next step are all legal. As a result, $R\left(N, m_{0}\right) \mid \rho \subseteq \mathcal{L}_{(\omega, k)}$, i.e., the policy ρ is acceptable.

III. Proof of Theorem 4

Let ρ_{3} and ρ_{2} be the policies computed by Methods 3 and 2 , respectively. We prove that ρ_{3} is as permissive as ρ_{2}, i.e., $L(N$, $\left.m_{0}\right)\left.\right|_{\rho_{3}}=\left.L\left(N, m_{0}\right)\right|_{\rho_{2}}$.

We preliminarily introduce a new notation. Given a policy ρ and $\delta \in L_{o}\left(N, m_{0}\right)$, we denote $\operatorname{Next}_{\rho}(\delta)=\left\{t \in T\left|\sigma t \in L\left(N, m_{0}\right)\right| \rho\right.$, where $\left.\sigma \in A^{-1}(\delta)\right\}$, i.e., the set of transitions that are firable in the next step under the control policy ρ after observing δ.

First, consider $\delta=\varepsilon$. It is clear that $\rho_{2}(\varepsilon)=\Psi\left(m_{0}{ }^{c}\right)$ $=\operatorname{Dis}\left(m_{p c 0}\right) \cap E n\left(m_{0}\right)$, while $\rho_{3}(\varepsilon)=\operatorname{Dis}\left(m_{p c 0}\right)$, where $m_{p c 0}$ is the marking of monitor p_{c} s.t. $m_{0}{ }^{c}=\left[\begin{array}{ll}m_{0} & m_{p c 0}\end{array}\right]^{T}$. Note that $\operatorname{Next}_{\rho_{2}}(\varepsilon)=E n\left(m_{0}\right) \backslash \rho_{2}(\varepsilon)$ and $\operatorname{Next}_{\rho_{3}}(\varepsilon)=E n\left(m_{0}\right) \backslash \rho_{3}(\varepsilon)$. Hence, it obviously holds that $\operatorname{Next}_{\rho_{2}}(\varepsilon)=\operatorname{Next}_{\rho_{3}}(\varepsilon)$.
Next, let t_{1} be the first observed transition, i.e., $\delta=t_{1}$. Consider Method 2. Let \mathcal{M}^{c} be the set of possible reached markings of ($N^{c}, m_{0}{ }^{c}$) consistent with t_{1} under control policy ρ_{2}. We observe that, $\forall m^{c} \in \mathcal{M}^{c}, m_{p c}=m_{p c 0}-\bar{\omega}\left(t_{1}{ }^{\prime}\right)$, where $t_{1}{ }^{\prime} \in A^{-1}\left(t_{1}\right)$. Since $\widetilde{\infty}\left(t_{11}\right)=\widetilde{\omega}\left(t_{12}\right)=\ldots=\bar{\omega}\left(t_{1 n}\right)$, where $\left\{t_{11}, t_{12}, \ldots, t_{1 n}\right\}=A^{-1}\left(t_{1}\right)$, all the markings in \mathcal{M}^{c} have the identical token-count in monitor p_{c}. Let a be such a number. It holds that $\Psi\left(\mathcal{M}^{c}\right)=\bigcup_{m^{c} \in \mathcal{M}^{c}} \Psi\left(m^{c}\right)=\bigcup_{m^{c} \in \mathcal{M}^{c}}\left(\operatorname{Dis}\left(m_{p c}\right) \cap E n(m)\right)$. As a result, $\rho_{2}\left(t_{1}\right)=\Psi\left(\mathcal{M}^{c}\right)=E n(\mathcal{M}) \cap \operatorname{Dis}(a)$, where \mathcal{M} is the set of markings by restricting markings in \mathcal{M}^{c} to the net N, which is exactly the set of possible reached markings of $\left(N, m_{0}\right)$ consistent with t_{1} under control policy ρ_{2}. Hence, $\operatorname{Next}_{\rho_{2}}\left(t_{1}\right)=$ $E n(\mathcal{M}) \backslash \rho_{2}\left(t_{1}\right)=E n(\mathcal{M}) \backslash \operatorname{Dis}(a)$. Consider Method 3. $\rho_{3}\left(t_{1}\right)=\operatorname{Dis}\left(m_{p c}{ }^{*}\right)$, where $m_{p c}{ }^{*}=m_{p c 0}+\min _{t^{\prime} \in T_{\text {real }}}\left(-\bar{\sigma}\left(t^{\prime}\right)\right)$ and $T_{\text {real }}$ $\subseteq A^{-1}\left(t_{1}\right)$. Hence, $m_{p c}{ }^{*}=a$. Since $\operatorname{Next}_{\rho 2}(\varepsilon)=\operatorname{Next}_{\rho 3}(\varepsilon)$, the set of possible reached markings of $\left(N, m_{0}\right)$ consistent with t_{1} under
the control of ρ_{3} is also \mathcal{M}. Hence, $\operatorname{Next}_{\rho_{3}}\left(t_{1}\right)=$ $E n(\mathcal{M}) \backslash \rho_{3}\left(t_{1}\right)=E n(\mathcal{M}) \backslash \operatorname{Dis}(a)$. Clearly, $\operatorname{Next}_{\rho_{2}}\left(t_{1}\right)=\operatorname{Next}_{\rho_{3}}\left(t_{1}\right)$.

By repeating the same procedure, we can see $\operatorname{Next}_{\rho_{2}}(\delta)=\operatorname{Next}_{\rho_{3}}(\delta), \forall \delta \in L_{o}\left(N, m_{0}\right)$. This implies that $L(N$, $\left.m_{0}\right)\left.\right|_{\rho_{3}}=\left.L\left(N, m_{0}\right)\right|_{\rho_{2}}$. Thus we conclude that, since ρ_{2} is optimal, ρ_{3} is also optimal.

IV. Case Study

We consider a tourist attraction consisting of four areas A-D, as shown in Fig. 1. The entrance and exit of the tourist attraction are located in area A and there are several one-way gates between areas. A PN system modelling the flow of visitors in the tourist attraction is depicted in Fig. 2. In more detail, places $p_{1}-p_{4}$ model areas A-D, respectively. Each transition models the transit of one visitor in the corresponding gate, which is physically detected by a sensor installed on the gates. Moreover, each token models one visitor. Initially, the PN system is in a state where each area contains one visitor.

Suppose that there is a restriction on the number of visitors in area C (modeled by place p_{3}) due to safety constraints. Assume that a malicious attacker wants to interfere with the control system with the goal of compromising its safety. Here, we consider a practical scenario in which the control center communicates with sensors/actuators related to all the gates via a communication network. In terms of PNs, this means that a control policy to be designed works by observing the firing of transitions and controlling transitions according to the current observation. Now, suppose that the controller knows that the communication channel related to sensors installed with gate $g_{B C}$ is vulnerable to attacks and its sensor signals are prone to be disguised as the sensor signals produced by gate $g_{B D}$. In this case, when designing a control policy, we need to take into account the replacement attack $\mathcal{A}=\left\{\left(t_{3}, t_{4}\right)\right\}$.

Fig. 1 Sketch map of a tourist attraction

Fig. 2 PN model of the tourist attraction in Fig. 1 vulnerable to the replacement attack $\mathcal{A}=\left\{\left(t_{3}, t_{4}\right)\right\}$

Fig. 3 Monitor-controlled PN system relative to the PN system in Fig. 2 and the GMEC $(\omega, k): m\left(p_{3}\right) \leq 3$

In what follows, we apply Methods 1-3 in the paper to control the system. We assume that the number of visitors in area C cannot be more than three, i.e., we enforce the $\operatorname{GMEC}(\omega$, $k): m\left(p_{3}\right) \leq 3$. The monitor-controlled PN system relative to the $\operatorname{GMEC}(\omega, k): m\left(p_{3}\right) \leq 3$ is shown in Fig. 3. Table 1 illustrates the application of Methods 1-3 for a possible system evolution. In more detail, the first column shows the observed transitions, the second column records the set \mathcal{M} of markings consistent with the current observation, which is computed in Method 1, the third column records the set \mathcal{M}^{c} of markings of the monitor-controlled system consistent with the current observation, which is computed in Method 2, and the forth column provides the disabled set computed by Methods 1 and 2. The last three columns refer to Method 3 and contain the marking, Flag, and the disabled set computed in Method 3, respectively. Note that, for sake of clarity, the number of tokens in the monitor place p_{c} are highlighted in bold in the table. Besides, we write " x " to indicate that we do not record the token count in the corresponding place.

For this example, it can be verified that the condition of Theorem 4 is not satisfied. In more detail, we observe that $A^{-1}\left(t_{4}\right)=\left\{t_{3}, t_{4}\right\}$ but $\bar{\sigma}\left(t_{3}\right) \neq \bar{\omega}\left(t_{4}\right)$ since $\bar{\sigma}\left(t_{3}\right)=1$ and $\bar{\sigma}\left(t_{4}\right)=0$. Thus, the policy computed by Method 3 is not guaranteed to be optimal. Indeed, from TABLE 1, we can see that the policy computed by Method 3 is more restrictive than those computed by Methods 1 and 2. Nevertheless, we note that Method 3 records one marking only while Methods 1 and 2 both record multiple markings.

TABLE 1 Application of Methods 1-3

	Method 1\&2			Method 3		
t_{i}	\mathcal{M}	$\mathcal{M}^{\text {c }}$	$\rho(\delta)$	m^{c}	Flag	$\rho(\delta)$
ε	$[1,1,1,1]^{\text {T }}$	$[1,1,1,1,2]^{\text {T }}$	\varnothing	$[1,1,1,1,2]^{\text {T }}$	True	\varnothing
t_{1}	$[2,1,1,1]^{\mathrm{T}}$	$[2,1,1,1,2]^{\text {T }}$	\varnothing	$[2,1,1,1,2]^{\text {T }}$	True	\varnothing
t_{1}	$[3,1,1,1]^{\mathrm{T}}$	$[3,1,1,1,2]^{\mathrm{T}}$	\varnothing	$[3,1,1,1,2]^{\mathrm{T}}$	True	\varnothing
t_{2}	$[2,2,1,1]^{\mathrm{T}}$	$[2,2,1,1,2]^{\text {T }}$	\varnothing	$[2,2,1,1,2]^{\text {T }}$	True	\varnothing
t_{4}	$\begin{aligned} & {[2,1,2,1]^{\mathrm{T}} ;} \\ & {[2,1,1,2]^{\mathrm{T}}} \end{aligned}$	$\begin{aligned} & {[2,1,2,1,1]^{\mathrm{T}} ;} \\ & {[2,1,1,2,2]^{\mathrm{T}}} \end{aligned}$	\varnothing	$[\times, \times, \times, \times, 1]^{\mathrm{T}}$	False	\varnothing
t_{7}	$\begin{aligned} & {[3,1,2,0]^{\mathrm{T}} ;} \\ & {[3,1,1,1]^{\mathrm{T}}} \end{aligned}$	$\begin{aligned} & {[3,1,2,0,1]^{\mathrm{T}} ;} \\ & {[3,1,1,1,2]^{\mathrm{T}}} \end{aligned}$	\varnothing	$[\times, \times, \times, \times, 1]^{\text {T }}$	False	\varnothing
t_{2}	$\begin{aligned} & {[2,2,2,0]^{\mathrm{T}} ;} \\ & {[2,2,1,1]^{\mathrm{T}}} \end{aligned}$	$\begin{aligned} & {[2,2,2,0,1]^{\mathrm{T}} ;} \\ & {[2,2,1,1,2]^{\mathrm{T}}} \end{aligned}$	\varnothing	$[\times, \times, \times, \times, 1]^{\text {T }}$	False	\varnothing
t_{4}	$\begin{aligned} & {[2,1,3,0]^{\mathrm{T}} ;} \\ & {[2,1,2,1]^{\mathrm{T}} ;} \\ & {[2,1,1,2]^{\mathrm{T}}} \end{aligned}$	$\begin{aligned} & {[2,1,3,0, \mathbf{0}]^{\mathrm{T}} ;} \\ & {[2,1,2,1, \mathbf{1}]^{\mathrm{T}} ;} \\ & {[2,1,1,2,2]^{\mathrm{T}}} \end{aligned}$	$\left\{t_{3}\right\}$	$[\times, \times, \times, \times, \mathbf{0}]^{\text {T }}$	False	$\left\{t_{3}, t_{6}\right\}$
t_{4}	$\begin{aligned} & {[2,0,3,1]^{\mathrm{T}} ;} \\ & {[2,0,2,2]^{\mathrm{T}} ;} \\ & {[2,0,1,3]^{\mathrm{T}}} \end{aligned}$	$\begin{aligned} & {[2,0,3,1, \mathbf{0}]^{\mathrm{T}} ;} \\ & {[2,0,2,2,1]^{\mathrm{T}} ;} \\ & {[2,0,1,3,2]^{\mathrm{T}}} \end{aligned}$	$\left\{t_{6}\right\}$	$[\times, \times, \times, \times, \mathbf{0}]^{\text {T }}$	False	$\left\{t_{3}, t_{6}\right\}$
t_{2}	$\begin{aligned} & {[1,1,3,1]^{\mathrm{T}} ;} \\ & {[1,1,2,2]^{\mathrm{T}} ;} \\ & {[1,1,1,3]^{\mathrm{T}}} \end{aligned}$	$\begin{aligned} & {[1,1,3,1, \mathbf{0}]^{\mathrm{T}} ;} \\ & {[1,1,2,2,1]^{\mathrm{T}} ;} \\ & {[1,1,1,3,2]^{\mathrm{T}}} \end{aligned}$	$\left\{t_{3}, t_{6}\right\}$	$[\times, \times, \times, \times, \mathbf{0}]^{\text {T }}$	False	$\left\{t_{3}, t_{6}\right\}$
t_{5}	$\begin{aligned} & {[1,1,2,2]^{\mathrm{T}} ;} \\ & {[1,1,1,3]^{\mathrm{T}} ;} \\ & {[1,1,0,4]^{\mathrm{T}}} \end{aligned}$	$\begin{aligned} & {[1,1,2,2,1]^{\mathrm{T}} ;} \\ & {[1,1,1,3,2]^{\mathrm{T}} ;} \\ & {[1,1,0,4,3]^{\mathrm{T}}} \end{aligned}$	\varnothing	$[\times, \times, \times, \times, 1]^{\text {T }}$	False	\varnothing

t_{2}	$[0,2,2,2]^{\mathrm{T}} ;$	$[0,2,2,2, \mathbf{1}]^{\mathrm{T}} ;$	\varnothing	$[\times, \times, \times, \times, \mathbf{1}]^{\mathrm{T}}$	False	\varnothing
	$[0,2,1,3]^{\mathrm{T}} ;$	$[0,2,1,3,2]^{\mathrm{T}} ;$				
t_{7}	$[0,2,0,4]^{\mathrm{T}}$	$[0,2,0,4, \mathbf{3}]^{\mathrm{T}}$				
	$[1,2,2,1]^{\mathrm{T}} ;$	$[1,2,2,1, \mathbf{1}]^{\mathrm{T}} ;$	\varnothing	$[\times, \times, \times, \times, \mathbf{1}]^{\mathrm{T}}$	False	\varnothing
	$[1,2,1,2]^{\mathrm{T}} ;$	$[1,2,1,2,2]^{\mathrm{T}} ;$				
t_{6}	$[1,2,0,3]^{\mathrm{T}}$	$[1,2,0,3, \mathbf{3}]^{\mathrm{T}}$				
	$[1,2,3,0]^{\mathrm{T}} ;$	$[1,2,3,0, \mathbf{0}]^{\mathrm{T}} ;$	$\left\{t_{3}\right\}$	$[\times, \times, \times, \times, \mathbf{0}]^{\mathrm{T}}$	False	$\left\{t_{3}, t_{6}\right\}$
	$[1,2,2,1]^{\mathrm{T}} ;$	$[1,2,2,1, \mathbf{1}]^{\mathrm{T}} ;$				
t_{5}	$[1,2,1,2]^{\mathrm{T}}$	$[1,2,1,2,2]^{\mathrm{T}}$		$[\times, \times, \times, \times, \mathbf{1}]^{\mathrm{T}}$	False	\varnothing
	$[1,2,2,1]^{\mathrm{T}} ;$	$[1,2,2,1, \mathbf{1}]^{\mathrm{T}} ;$	\varnothing			
\ldots	$[1,2,1,2]^{\mathrm{T}} ;$	$[1,2,1,2,2]^{\mathrm{T}} ;$		\ldots	\ldots	

